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Preface

The rapid development of artificial intelligence industry drives the explosive
growth of various Al applications. As the critical infrastructure bridging end users and
computing resources, metropolitan area networks (MANs) are now facing
transformative requirements in network architecture, functional capabilities, and
service paradigms.

In 2024, China Telecom pioneered the industry-first ‘computing service-oriented
metropolitan area network’ concept and released the ‘computing service-oriented
metropolitan area network White paper’, generating significant industry-wide
attention and discourse. As a continuation, this white paper provides in-depth analysis
of metropolitan area network evolution in the Al era. This white paper first analyzes
the development landscape of artificial intelligence from the perspectives of industry
advancement and macro policies. Subsequently, it conducts an in-depth analysis of Al
application requirements to define the essential network capabilities that metropolitan
area networks must possess. This white paper then examines the design objectives,
elaborating on the overall architecture and key technologies of metropolitan area
networks for the Al era. Finally, it provides technical solutions tailored for typical
scenarios.

The following organizations and principal members contributed to the preparation
of this whitepaper:
® China Telecom Research Institute: Yongqing Zhu, Zehua Hu, Xia Gong, Shizhang

Yuan
® Zhongguancun Ultra Cross Connection New Infrastructure Industry Innovation

Alliance: Bo Yuan
® Huawei Technologies Co. Ltd.: Haobin Zhao, Jie Dong, Li Zhang

® ZTE Corporation: Wenqiang Tao, Haidong Zhu, Xiaowei Ji
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Chapter I

Development Trends of
Artificial Intelligence



1.1 AI Industry enters a phase of accelerated growth

As the core driving force leading the Fourth Industrial Revolution, the artificial
intelligence (AI) industry is experiencing unprecedented rapid development,
demonstrating enormous market potential. According to Grand View Research, the
global Al market size reached 196.63 billion in 2023 and is projected to increase to
1,811.75 billion by 2030, with a compound annual growth rate (CAGR) of 37.3%
from 2024 to 2030. In China, research reports indicate that the scale of the Al industry
is expected to expand from 398.5 billion yuan in 2025 to 1,729.5 billion yuan in 2035,
with an estimated CAGR of 15.6%. Artificial intelligence has undoubtedly become a

powerful engine for global economic growth.

Global artificial intelligence market, 2018-2030 (US$M)
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Figure 1-1: Global artificial intelligent market

The global Al industry demonstrates a trend for development of ‘dual-track
advancement and diversified flourishing’. On the one hand, global technology giants
continue to intensify their Al investments: companies like Google and Microsoft are
deepening research and development (R&D) in core Al technologies; Amazon and
Apple persist in innovating intelligent cloud services and end-device smart
applications, while China's major tech firms such as Baidu, Alibaba, Tencent, and
Huawei (BATH) are also making rapid progress in key areas such as Al chip

development, large Al model construction, computer vision, and embodied



intelligence. On the other hand, the explosive breakthroughs in generative Al
technology have spurred a wave of innovative enterprises worldwide: OpenAl
pioneered the commercialization of generative Al with ChatGPT; Anthropic and
Cohere specialize in vertical-oriented development; and in 2025, China's DeepSeek
significantly accelerated the commercial application of large Al models in inference
scenarios. Numerous emerging Al supply chain companies have become investment
hotspots, collaborating with industry leaders to form a synergistic innovation
ecosystem. This dynamic development pattern that features competition and
symbiosis among diverse players not only accelerates the commercial deployment of
large language models in finance, healthcare, and manufacturing, but also provides
robust momentum for the high-quality development of the digital economy.
Benefiting from the rapid development of Al industry, Al technologies are
becoming powerful engines for urban development, injecting unprecedented vitality
into various sectors of cities: In transportation field, leveraging the precise predictive
capabilities of large Al models optimizes traffic flow and enhances travel efficiency.
In healthcare industry, Al-assisted diagnostic technologies enable the rapid and
accurate analysis of medical images, helping doctors to formulate treatment plans. In
education, customized teaching content is provided based on students' learning
progress and characteristics, stimulating their interest and potential. The financial
sector utilizes large Al models for risk assessment and investment decision-making,
improving the precision and security of financial services. Furthermore, numerous
fields such as intelligent manufacturing, intelligent government services, and
environmental monitoring have become more efficient, intelligent, and sustainable
through the empowerment of AI. The application of AI technologies provides
residents with more convenient, comfortable and secure living experiences, leading

cities to an intelligent and digital future.



1.2 Al is focal point of global industrial policies

Al has become one of the core driving forces for urban and social development,

forming a global consensus:

The United States launched the ‘White House Smart Cities Initiative’ in 2015,
leveraging Al, big data, and the Internet of Things (IoT) technologies to help
cities address challenges such as traffic congestion, energy management, and
public safety. By 2025, it would further strengthen Al infrastructure through the
‘Stargate Program’.

The European Union proposed the ‘European Data Union Strategy’ in 2025 to
promote Al and big data applications in healthcare, education, and urban
governance, supported by the ‘Digital Europe Programme’ to implement Al in
critical social and livelihood sectors.

Japan introduced the ‘Super City’ vision, integrating Al and IoT to create
data-driven ‘smart cities’.

Singapore implemented its 'National Al Strategy 2.0', which combines talent
attraction, industrial applications, R&D innovation, and infrastructure to build an
Al ecosystem that improves public services and industrial competitiveness.

The Chinese government also prioritizes Al-driven urban development. In 2024,
China’s National Data Administration issued guidelines to deepen smart city
initiatives, encouraging Al-powered solutions, such as intelligent analysis,
scheduling, regulation and decision making, to comprehensively empower urban
digital transformation.

Networks have become critical infrastructure supporting global Al industry

development and are receiving high priority from nations worldwide:

In China, ‘empowering computing through networks’ has been established as a
fundamental principle for building smart cities. In October 2023, China's Ministry
of Industry and Information Technology (MIIT) introduced the High-Quality
Development Action Plan for Computing Infrastructure, which aims to create a

group of computing power network city benchmarks in key regions.
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In June 2023, the Singapore government launched its Digital Connectivity
Blueprint, proposing the construction of seamless end-to-end 10Gbps domestic
connectivity within five years to ensure Singapore's digital infrastructure remains
world-class and sets the direction for its digital future.

In April 2024, Saudi Arabia's Ministry of Communications released the Saudi
Arabia's 10Gbps Society White Paper, becoming the first globally to propose an
end-to-end high-speed, high-quality Net5.5G network architecture to support the
country's intelligent transformation.

In 2025, the European Commission Digital Europe Programme (DIGITAL)
2025-2027 also emphasized the need to enhance network resilience in various Al
scenarios.

In Kazakhstan, the government is vigorously advancing digital transformation
and the development of artificial intelligence (Al).

In February 2024, Kazakhstan’ s Ministry of Digital Development released the
"AI Development Concept for 2024-2029". This document plans to establish a
National Al Center, integrate resources across various fields, and promote the
extensive application of Al in economic and social sectors. To cultivate Al talents,
Kazakhstan has reformed its education system: starting from 2026, Al tools will
be incorporated into the curricula of primary and secondary schools; meanwhile,
many universities have launched Al-related educational programs, and over 2,000
postgraduate students are currently engaged in Al research.

Kazakhstan has set up a $1 billion venture capital fund at the Astana International
Financial Center to support promising Al startups. In July 2025, with the
commissioning of its first supercomputer, the country’ s computing power has
been significantly enhanced, laying a solid foundation for Al development.

In September 2025, President Tokayev announced in his annual State of the
Nation Address that the government would establish the Ministry of Artificial
Intelligence and Digital Development, aiming to build a comprehensive digital

asset ecosystem. At the same time, he proposed the establishment of a National



Digital Asset Fund and the acceleration of the implementation of the Digital Code.

These measures are intended to comprehensively drive the country ’ s digital

development, with the goal of transforming Kazakhstan into a fully digitalized

nation within three years.

With the widespread adoption of large Al models and growing demand for
applications such as distributed inference, the role of networks in Al development is
becoming increasingly prominent. Building a second "information superhighway"

dedicated to Al has emerged as a global priority.
1.3 Al technology is developing explosively

1.3.1 Al technology is advancing comprehensively

The development of Al technology demonstrates notable trends of diversified

collaboration, high-efficiency evolution, and multi-ecosystem integration:

® At the hardware level, the significant increase in inference scenarios has driven
rapid advancements in dedicated Al chips such as TPUs and LPUs, while
general-purpose GPUs, combined with cutting-edge technologies like chiplet, 3D
stacking, and quantum computing, provide enhanced capabilities for
ultra-large-scale Al model training.

® In storage technology, protocols such as HBM3 and CXL have achieved leaps in
memory bandwidth and capacity, while architectures such as storage-compute
disaggregation meet the demand for building private knowledge bases based on
large Al models.

® High-speed interconnect technologies such as UEC, NVLink, UCle and Falcon
break down data transmission barriers, enabling efficient collaboration between
distributed computing and heterogeneous architectures.

® On the software ecosystem, open-source frameworks such as PyTorch and
TensorFlow are deeply integrating with automated toolchains, combined with
cloud-edge-device unified deployment, to achieve end-to-end optimization from

training to inference.



® [n addition, green computing technologies, including liquid cooling and dynamic

power management, contribute to the sustainable development of Al

1.3.2 Large Al model technology enters rapid development

phase

Large Al models have become one of the most widely applied key Al
technologies today. From the launch of ChatGPT in 2022 to the rise of DeepSecek in
2025, the field of large Al models has experienced explosive growth. The
development of large models exhibits multi-dimensional trends: on one hand, model
scale continues to expand with increasing parameter counts, enabling the capture of
more complex patterns and relationships to enhance performance across various tasks;
on the other hand, multi-modal fusion has become an important development
direction, as large models combine text, image, speech and other multi-modal data to
achieve more comprehensive understanding and generation of information, expanding
their application scenarios. Additionally, greater attention is being paid to model
safety, reliability and interpretability, with researchers committed to developing more
robust model architectures and training methods to ensure stable operation and
trustworthy application of large Al models in complex environments. These trends
collectively drive the continuous advancement of large Al model technology, laying a
solid foundation for the widespread application of Al. Currently, large Al models are
evolving in the following technical directions:

Direction 1: As the parameters and training data scale of large Al models continue
to increase, the demand for computing power is also growing rapidly. Single 1K+
GPUs or 10K+ GPUs Al Data Centers (AIDC) can hardly meet the requirements of
ultra-large-scale training. Taking Llama 3.1 released in 2024 as an example, its largest
model has 405B parameters and requires approximately 15 trillion Tokens for
pre-training, with the entire training process demanding 39.3 million GPU/hours
(H100) of computing power. Therefore, adopting distributed training methods and

utilizing high-performance networks to enhance the collaborative training
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efficiency across multiple AIDCs has become a necessity for AI development.
Currently, multiple operators have completed the commercial deployment of
distributed training, achieving the distributed training for 10K+ GPUs, 100B
parameters large Al models across AIDCs over distances 100+ kilometers. Among
them, China Telecom and Huawei jointly deployed the distributed training service
supporting 120KM wide-area RDMA lossless transmission, with training efficiency
reaching over 95%.

Direction 2: Software engineering optimization has become the key pathway
to break through AI hardware bottlenecks, driving large Al models toward
cost-effective development, and accelerating the adoption of Al across industries.
The open-source DeepSeek-V3 in 2025 completed pre-training in just two months
using only 2,048 GPUs through algorithmic optimization, while the DeepSeek-R1
model further compressed the training cycle to 2-3 weeks. This ‘low-cost &
open-source’ solution significantly lowered the technical threshold for large Al
models, directly leading to two notable changes: First, the relatively low usage costs
triggered explosive growth in large Al model-based applications, resulting in surging
Al traffic within cities that requires network to ensure efficient Al traffic steer;
Second, through full-stack software engineering optimization spanning ‘algorithm &
hardware & system’, Al inference latency was reduced by over 60%, driving
exponential growth in Al inference demand.

Direction 3: The intelligent interaction of multi-edge agents reflects Al
technology's transformation from centralized to distributed systems and from
single intelligence to collective intelligence, driving breakthroughs in real-time
performance, autonomy, and collaboration of AIl. Large Al models can achieve
lightweight deployment through techniques like model distillation, making them
compatible with resource-constrained scenarios such as consumer-grade GPUs,
mobile devices, and IoT equipment, thereby promoting the development of
edge-based small intelligent devices. At the software level, the widespread adoption

of Multi-Agent technology enables multiple terminals to collaboratively complete



complex tasks, further advancing large-scale interactive applications of edge agents.
Google's introduction of the A2A and MCP protocols for agent interaction in 2025
signals Al's impending transition from the ‘cloud computing’ architecture of B2B,
B2C, and C2C to the ‘granular computing’ architecture of A2A, M2M, and X2X, with
the frequent interactions between intelligent computing particles place higher
demands on the reliability, and bandwidth capacity of network.

Direction 4: In September 2024, OpenAl launched the ol model with
Chain-of-Thought (CoT) mechanism, which achieves higher accuracy by extending
thinking time during inference, marking a paradigm shift from pursuing response
speed to emphasizing deep reasoning. This transformation has driven the shift of
computing power demand from pre-training to inference, breaking through the
limitations of Scaling Law: while pre-training relies on 10K+ GPUs Scaling-up
clusters, inference can be implemented through Scaling-out architectures
composed of a small number of GPUs, promoting the evolution of Al
infrastructure toward distributed and flexibly scheduled systems. Additionally,
the significantly increased deployment demands on Al inference have raised
requirements for large-scale inference performance improvements. Network-based
distributed inference has become a key direction for future urban Al applications,
necessitating networks to support distributed Al inference deployment. In response,
NVIDIA introduced the Dynamo framework, adopting a PD-separated architecture to

optimize resource scheduling and computing efficiency in large-scale Al inference.

1.4 Challenges to MAN from large-scale Al

commercialization

Building a comprehensive Al urban ecosystem has become the core pathway for
upgrading urban systems to advanced intelligence. In this process, the concept of
‘City as a Computer’ has gradually gained global consensus: by deeply integrating
computing power, storage, and terminals through metropolitan area networks (MANSs),

cities are transformed into distributed ultra-large-scale computing systems, enabling
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citywide intelligent management through millisecond-level data flow and real-time
decision-making. Existing broadband networks, mobile networks, dedicated
government and enterprise networks, and cloud networks within cities connected
various users. However, traditional MANs struggle to meet the requirements for
carrying urban Al services, whether in terms of network architecture or core

technologies.

1.4.1 Challenges in data circulation

The training of large Al models and the construction of knowledge bases
typically require data volumes at the TB/PB scale, which imposes higher throughput
requirements on data transmission networks. Simultaneously, the computing traffic of
large models exhibits significant elastic characteristics, demanding extremely high
network reliability. Substandard and non-deterministic networks may result in
insufficient data transmission bandwidth, excessive latency, or frequent packet loss,
thereby compromising the availability of computing resources. Furthermore, version
iterations of large models and knowledge base upgrades in Al systems also depend on
stable network support. Poor network quality can constrain the implementation of
these functions, ultimately reducing the overall operational efficiency of Al
infrastructure.

The rapid development of large-scale inference applications and A2A computing
paradigms has introduced new challenges to urban Al data circulation: on one hand,
MANSs need to meet the efficient data communication and interaction requirements
between distributed inference nodes; on the other hand, the A2A mode has led to
exponential growth in high-frequency interaction traffic across intelligent agents,
which not only significantly increases the bandwidth requirements of edge networks
but also requires MANs to ensure the reliability of information interaction between
intelligent agents. Therefore, to realize the vision of ‘City as a Computer’, it is urgent
to build a new ultra-interconnected network different from traditional MANs to meet

the transmission requirements of Al computing data flows and enable MANs to
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effectively support efficient computational data circulation.

1.4.2 Challenges in O&M

When MANSs carry Al services, network management and maintenance (O&M)
face greater challenges. From service model perspective, Al has transformed network
traffic patterns: large Al model training can cause sudden traffic surges, while
frequent interactions between intelligent agents also generate bursty communication,
requiring networks to possess predictive planning and maintenance capabilities. Al
services also demand higher network reliability, even minor faults during model
training may lead to complete task resets. When large-scale inference services replace
manual services in cities, networks must ensure service experience.

Consequently, traditional management models that rely on manual intervention
and route convergence to ensure basic network availability can no longer meet the
performance demands of Al services. Al services require higher fault self-healing
rates and lower latency in network optimization decisions, pushing network
operations toward high autonomy to fulfill needs like predictive maintenance, service
awareness, and elastic optimization. The question of how to equip networks with
highly intelligent management and operational capabilities, namely automating the
adjustment of network resources and configurations based on the intentions and states

of computing services, has become a key focus for Al-oriented MANSs.

1.4.3 Challenges in security and trustworthiness

With the rapid adoption of large models, vast amounts of urban data are being
utilized for analysis, computation, and processing. Data from enterprises, households,
and individuals constitute private domain traffic, posing significant security risks: For
households and individuals, private domain traffic involves sensitive data such as
personal information and consumption behaviors, where leaks could lead to privacy
violations; for enterprises, private domain traffic encompasses R&D data, production

data, and operational data, where breaches could undermine competitiveness or even
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trigger legal disputes. Since data transmission faces potential threats such as theft,
tampering, and loss, MANs must have robust data protection capabilities to ensure
data confidentiality, integrity, and availability.

Traditional AAA (Authentication, Authorization and Accounting) systems and
data encryption technologies based on traffic flows struggle to meet the security and
trust requirements of Al scenarios. However, emerging technologies like blockchain
and quantum encryption offer innovative solutions for trustworthy data circulation:
blockchain provides immutable, end-to-end traceable trust mechanisms for Al data
flows through distributed ledgers and smart contracts; quantum encryption leverages
breakthroughs like quantum key distribution to fundamentally enhance
anti-eavesdropping capabilities for data transmission. MANs must integrate these
innovative mechanisms to establish a trusted foundation for large-scale urban Al
deployment, providing critical infrastructure support for the widespread

implementation of metropolitan Al services.
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Chapter 11

Al-Driven Requirements
for MAN



2.1 Al applications annovation aontinues to accelerate

In early 2025, DeepSeek spearheaded a transformative wave in generative Al,
driven by its exceptional performance and industry-leading cost efficiency in LLM
training and inference, accelerating the commercialization of Al technologies. Today,
Al applications have entered the stage of scaled deployment, serving diverse scenarios
across home(toH), consumer (toC), and business (toB), with penetration into multiple

vertical industries including media, legal services, education, and manufacturing.

2.1.1 AltoH scenarios

Al significantly enhances the professionalism, interactivity, and personalization
of home services, enriching home scenarios. Currently, the industry is gradually
reaching a consensus on building an integrated smart home ecosystem that combines
connectivity, computing power, and intelligence. Through cloud-network-edge-device
collaboration, providing broadband users with an smart cloud services, supporting
various AltoH scenarios including smart home and home assistants:
® Smart home: Smart TV, smart refrigerators and other smart home products,

utilizing Al technologies like voice recognition and computer vision, now support

intelligent capabilities including natural language interaction, user habit learning
and contextual adaptation. These smart home products can dynamically adjust
lighting, temperature and humidity based on user preferences, while employing
facial recognition and behavior analysis technologies to enhance home security.

® Home assistants: Smart home assistant products, including smart speakers and
domestic robots, employ natural language processing and other Al technologies
to enable harmonious human-machine dialogue. These products achieve precise
intent understanding to execute tasks including schedule reminders and
information retrieval, while enabling contextualized services such as appliance

control and security monitoring through seamless IoT interoperability.
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2.1.2 AltoC scenarios

Al revolutionizes the interactions between consumer and service, driving
enhanced user experiences and fostering market innovation. The AI innovation
landscape is witnessing rapid proliferation of various vertical applications. Major
industry players are actively deploying AltoC solutions across smart terminals,
personalized services, and digital lifestyle domains, leveraging metropolitan Al
services to enhance user experience and retention. The current AltoC applications
primarily encompass the following categories:
® Productivity Enhancement: Al applications such as intelligent search, automated

summarization, content generation, and code assistance have significantly

improved efficiency for both individuals and organizations. These applications
streamline complex workflows, enabling users to focus on higher-value strategic
initiatives while fostering innovation and competitive advantage.

® C(Creative Generation: Al applications including design automation, image
generation, video synthesis, and music composition are revolutionizing the
content creation industry. These applications augment creative ideas for content
creators.

® Entertainment: Al applications such as Al cameras and virtual companions are
transforming user experience through novel interaction paradigms and enhanced
engagement. These applications leverage user profiling to deliver personalized

entertainment services, elevating the enjoyment of digital experiences.

2.1.3 AltoB scenarios

Al demonstrates formidable capabilities in data analytics and decision support,
enabling enterprises to achieve significant operational efficiency improvements and
substantial cost reductions. Furthermore, Al exhibits exceptional capabilities in data
processing and content generation, enabling enterprises to access novel business
opportunities. The technological convergence of Al, 5G, and edge computing is

accelerating industrial intelligent transformation, establishing a closed-loop value
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system of ‘high-speed connectivity+real-time computing+intelligent decision-making’

that is reshaping entire processes from production to maintenance:

Accelerating Product Development: During the requirements analysis phase, Al
leverages natural language processing and sentiment analysis to rapidly mine
massive user feedback and market data, enabling precise identification of latent
needs and pain points. In the conceptual design phase, Al automatically produces
hundreds of viable solutions based on historical data and design specifications for
engineers to evaluate, significantly compressing design cycles. For engineering
validation, physics-informed Al simulation systems accurately predict product
performance parameters, substantially reducing verification costs.

Enhancing Operational Efficiency: Al empower enterprises to achieve intelligent
and high-efficiency operations through automated process enhancement, optimal
resource allocation, and strengthened supply chain management. For instance,
Al-driven monitoring systems conduct real-time surveillance of supply chain
nodes, predicting potential disruptions and demand fluctuations to dynamically
optimize inventory levels and logistics planning. Futhermore, Al-driven
maintenance systems analyze sensor data and historical maintenance records to
accurately forecast failure patterns, enabling proactive maintenance scheduling

that significantly reduces unplanned downtime.

2.2 Al applications exhibit diverse deployment models

The deployment of Al applications requires meeting differentiated response

requirements while considering critical aspects including data security, elastic

resource scaling, and system maintenance. Through the coordination of urban Al Data

Center (AIDC), Metropolitan Area Networks (MANSs), and various deployment

models, a hierarchical and collaborative city Al enablement system can be constructed.

Common deployment models include: cloud deployment, on-premises deployment,

hybrid deployment, federated deployment, and edge deployment.

Cloud Deployment: Internet service providers typically adopt cloud deployment
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to enable rapid Al application provisioning and extensive user coverage. Leading
enterprises usually build proprietary AIDC to support their own service requirements
while offering computing power leasing services. For small and medium enterprises,
establishing proprietary AIDC incurs high investment and maintenance costs, making
them more inclined to lease computing power for rapid Al application deployment
and iteration.

On-Premises Deployment: On-premises deployment is particularly suited for
industries such as finance, healthcare, and manufacturing that require stringent data
security and compliance. This approach enables enterprises to maintain full control
over their data, ensuring all data processing and storage remain within their internal
networks while delivering ultra-low application access latency. However, the
continuous scaling of Al models results in prohibitively high costs and demanding
operational requirements for on-premises deployment.

Hybrid Deployment: Hybrid deployment combines the advantages of cloud and
on-premises deployment, enabling enterprises to process sensitive data locally while
utilizing cloud resources for non-sensitive data processing. Enterprises can process
latency-critical tasks locally while strategically offloading compute-intensive or
non-core workloads to cloud, optimizing both on-premises hardware investments and
operational expenditures. Hybrid deployment provides enterprises with a balanced
solution for performance, security, and cost, making it one of the increasingly
preferred approaches for deploying Al applications.

Federated Deployment: Federated deployment leverages distributed computing
to enable multiple enterprises to collaboratively train a more effective global model
without sharing privacy data. Specifically, each participant trains AI model locally,
then transmits the encrypted model parameters to a central server for aggregation,
generating an improved global Al model that is subsequently distributed to all
participants. Federated deployment facilitates collaborative learning across multiple
participants while preserving data privacy, delivering an innovative and practical

deployment approaches for Al applications.
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Edge Deployment: Edge deployment targets scenarios requiring real-time
processing and rapid response, such as autonomous driving, industrial control systems,
and smart home. For instance, in autonomous driving, edge-deployed Al applications
enable real-time analysis of data from cameras, radars and sensors to facilitate instant
decision-making, ensuring rapid response to environmental changes. In industrial
control systems, edge-deployed Al applications maintain continuous operation even

without stable network connectivity, guaranteeing uninterrupted production.

2.3 Al applications impose new requirements on

MAN:Ss

MANSs interconnects heterogeneous computing resources and diverse user
terminals within the region, providing connectivity for various deployment models
including cloud deployment and hybrid deployment, and serving as a critical
infrastructure for the sustained development of Al. Developing MANs like urban
power grids or water grids to enable ‘one-point access, on-demand computing’
computing power services has progressively become an industry-wide consensus.

The AI models required for different application scenarios exhibit significant
variations, which can be categorized by scale into two distinct types: large models and
small models. Small Al models typically refer to those with fewer parameters and
shallower layers, characterized by their lightweight architecture, computational
efficiency, and deployment flexibility. These models are specifically optimized for
dedicated tasks and vertical domains, with representative implementations including
DistilBERT, TinyBERT, and MobileNet. Large Al models refer to those with massive
parameters and sophisticated computational architectures, exhibiting enhanced
representational power and superior accuracy to handle more sophisticated tasks, with

representative examples including Deepseek, GPT-4, Qwen. Diverse Al model impose

significantly differentiated requirements on MANS.
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2.3.1 Requirements of large AI model
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Figure 2-1: Requirements of Large Al Model

The lifecycle of large Al models encompasses multiple stages including sample
data transmission, model training and model inference, each presenting distinct data
transmission characteristics in terms of volume and patterns, consequently imposing
higher requirements on MANSs.

1. Transmiting sample data into AIDC

With the rapid advancement of large Al models, data volume is growing at an
unprecedented rate. According to the Global DataSphere 2023 report released by IDC
(International Data Corporation), China's data volume reached approximately 30 ZB
in 2023 and is projected to expand to 76.6 ZB by 2027. Currently, numerous
enterprises still rely on shipping physical hard drives to transfer sample data. This
‘manual copying + physical delivery’ approach is not only inefficient but also carries
data loss risks. Existing network-based solutions exhibit significant limitations:
traditional dedicated line services adopt fixed-bandwidth monthly/annual subscription
models, while enterprises typically require only intermittent sample data transfers,

resulting in high costs relative to actual usage. MANs requires capability upgrades to
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provide more efficient and cost-optimized sample data transmission services.

MANSs should support network scale load balancing to achieve sustained
ultra-high throughput exceeding 90% across all links, enabling efficient hourly
transmission of terabyte(TB)-scale sample data from enterprise to AIDCs.
Simultaneously, MANs should feature highly elastic and agile service
capabilities, offering on-demand elastic bandwidth to enterprises through ‘just-in-time
provisioning’ task-based services, while providing multi-level data transmission
services (minute-level, hour-level, and day-level) to meet diverse user demands.
Furthermore, MANs should possess intelligent computing power orchestration
capabilities to dynamically match optimal computing-network resources and
transmission paths based on service characteristics including origin, type and
coverage area, thereby establishing a more agile and efficient computing power
provisioning system.

2. Model Training with Storage and Compute Disaggregated

Numerous industries handle sensitive data with critical security requirements, ,
such as the experimental and accident data in automotive manufacturing, or consumer
transaction records and personally identifiable information in financial. When leasing
cloud computing resources, these organizations or enterprises strictly require the
localized storage of data and the guaranteed protection against data leakage during
model training. To address these data security requirements, model training requires
the disaggregated storage and compute architecture (with compute nodes deployed in
cloud and storage nodes maintained on-premises), where training data is pulled into
memory on-demand without being written to compute node disks.

In this scenario, sample data is directly written from storage nodes to compute
node memory across MANs through RDMA technology. Current mainstream RDMA
protocols rely on Go-Back-N retransmission mechanisms, making them highly
sensitive to latency and packet loss (Even a 0.1% packet loss rate can degrade
computational performance by 50%). Therefore, MANs should not only support

highly resilient and high-throughput data transmission, but also incorporate precise
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flow control to guarantee lossless RDMA transmission, ensuring less than 5%
computational efficiency degradation across 100-500 km metropolitan domains.
Moreover, MANs should deploy robust data encryption mechanisms to ensure the
security of data transmission.

3. Coordinated model training among across AIDCs

The Scaling Law for large Al models persists, with computing power demands
having grown by approximately one million-fold over the past decade, and projected
to sustain an annual growth rate exceeding 400%. The scalability of individual
computing resource pools is constrained by physical infrastructure limitations
including space and power supply. Coordinated model training among multiple
AIDCs enables the efficient consolidation of geographically dispersed computing
power, supporting large Al model training at scales of 100K+ GPUs. The computing
power of existing AIDCs is typically small-scale (in China, AIDCs with 100-300
PFLOPS account for over 70% of the total). Therefore, integrating distributed
computing power across data centers, research institutions, and cloud service
providers will help overcome geographical, facility, and vendor constraints to
establish a unified and high-efficiency computing power service platform.

In this scenario, parameter-plane synchronization data is transmitted across
MANSs while sample-plane data remains stored within enterprise premises, effectively
isolating potential data leakage risks. This solution imposes stringent requirements on
network bandwidth and latency, mandating MANs to deploy 400G/800G links with
RDMA lossless transmission to guarantee zero packet loss during model training.
Parameter  synchronization  between = GPUs  predominantly  relies on
AllGather/AllReduce collective communication operations, introducing significant
challenges of highly concurrent and burst traffic patterns. Taking the training of a
1000 billion parameters model as an example, a single parameter synchronization
cycle in a 16K GPU AI cluster generates over 1.6 PB concurrent traffic. Therefore,
MANSs require device capability upgrades (including GB-level port buffers and

tenant-level queuing) to enable optimized burst traffic processing and collective

21



communication scheduling, while establishing high convergence ratio network
architectures (4:1, 8:1, 16:1) to balance computational efficiency with deployment
costs. Furthermore, network failures causing critical issues such as training task
interruptions would severely reduce training efficiency. MANs should implement
tenant-level network slicing isolation and incorporate network simulation and
self-healing  technologies to realize Level 4 autonomous network,
guaranteeing controllable failure impact scope and rapid service recovery.

4. Cloud-Edge Collaborative Model Training/Inference

The dramatic reduction in large model training and inference costs has enabled
enterprises to rapidly adopt Al applications through on-premises deployment of Al
Training & Inference server. However, enterprise on-premises computing resource
pools encounter significant challenges in capacity expansion and high operational
maintenance costs, rendering them inadequate to meet the escalating demands for
model fine-tuning and inference. To address this, the cloud-edge collaboration
between enterprise on-premises and cloud computing resource pools presents a more
efficient, agile, and cost-effective approach to realize elastic computing power scaling.
This solution leverages parallel computing techniques including pipeline parallelism
and expert parallelism to partition large Al models across on-premise and cloud
computing resource pools. By implementing localized deployment of input/output
embedding layers, it ensures strict on-premises sample data containment, thereby
fulfilling the data security requirements for highly regulated sectors such as financial
and healthcare.

In this scenario, MANs should support lossless RDMA transmission to prevent
significant computational efficiency degradation caused by packet loss.
Simultaneously, MANs requires tenant-level network slicing to ensure effective
service isolation, meeting SLA requirements while preventing interference from other
service failures. Furthermore, MANs should possess intelligent computing power
scheduling capabilities to dynamically select optimal edge resource pools based on

user location and service demands, ensuring efficient model fine-tuning/inference
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processes.

5. Inference Delivery

Al inference enables large Al models to be applied in real-world scenarios,
serving as the critical step for commercialization. By 2027, approximately 70% of
new applications are expected to incorporate Al inference models, with concurrent
transactions between Al applications and resource pools anticipated to reach the
million-scale threshold. Inference delivery comprises two fundamental processes:
model delivery, referring to the deployment of Al inference models across multiple
edge clouds; and result delivery, denoting the interaction between users and Al
inference models to generate required outputs.

In this scenario, MANs should provide low-latency and high-bandwidth data
transmission capabilities with ubiquitous coverage and seamless access to ensure the
service quality of AI applications. MANs should also incorporate deterministic
service capabilities, enabling precise traffic identification and optimized path

selection to enhance transmission determinism and reliability.

2.3.2 Requirements of small AI model

Small Al models feature compact architecture, low computational demands, and
rapid response capabilities. These models are typically designed for specialized tasks
and demonstrate unique advantages in resource-constrained environments such as
smart terminals and IoT devices. With their widespread deployment across smart
home systems, industrial IoT applications, and mobile platforms, they are imposing
more requirements on MAN.

1. Inference Delivery

In real-time Al inference, small Al models are predominantly deployed on edge
devices proximal to data sources, enabling instantaneous processing of input data and
generation of predictive outputs to achieve ultra-low latency response. For scenarios
requiring greater computational power, edge nodes collaborate with cloud in a hybrid

deployment architecture. Edge devices process routine high-frequency inference
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requests locally, while computationally intensive or anomalous cases are offloaded
through MANs to cloud for deep analysis. MANs should provide guaranteed
bandwidth, deterministic low-latency path, and intelligent traffic orchestration
capabilities to ensure reliable and real-time Al inference service delivery.

2. Federated learning

Federated learning is a critical training paradigm for small AI model. It adopts
Federated deployment that significantly enhances model efficacy while ensuring local
data privacy preservation, imposing three critical requirements on MAN: First,
real-time parameter synchronization demands guaranteed periodic connectivity for
participants to maintain training continuity; Second, data transmission security
requires end-to-end encryption for model parameters to prevent any potential model
leakage; Third, MANs should incorporate dynamic resource allocation capabilities,
allocating greater bandwidth to higher-priority participants based on their differential

training progress.

2.3.3 Requirements of hybrid AI model

Hybrid AI model deploys lightweight small AI models at edge while hosting large
Al models with advanced comprehension and reasoning capabilities in the cloud.
Through efficient collaboration between these models, hybrid AI Model fully
leverages the small model's advantages in low-latency response and personalized
adaptation while harnessing the large model's capabilities in multi-modal
understanding and generalized intelligence.

The coordination between large Al models and small Al models is primarily
reflected in two critical aspects: data interaction and model updating. For data
interaction, edge-deployed small Al models perform localized data collection and
preprocessing before transmitting critical data to cloud-deployed large Al models for
analysis, with the calculation results subsequently delivered back to edge devices for
execution. This process requires MANs to provide deterministic service capabilities

that ensure low-latency, high-bandwidth, and highly stable data transmission. For
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model updates, cloud-deployed large Al models can distribute optimized parameters
or models to edge devices through techniques such as knowledge distillation, enabling
continuous iteration of small AI models. This process relies on the network-level load
balancing capability of MANs to realize high throughput, particularly during

concurrent updates across massive edge devices.

24 Al applications driven MANs toward

next-generation evolution

The rapid advancement of Al applications is imposing more stringent demands on
MAN: At the architectural level, MANs should support efficient north-south and
cast-west traffic steering to meet cloud-edge and inter-cloud coordination
requirements, while enabling elastic scalability to achieve ubiquitous user access. At
the technical level, MANs should incorporate capabilities including network-scale
load balancing, flow-level precise flow control, and high oversubscription ratio
networking to support ultra-large-scale Al computing traffic, while ensuring real-time
interactive experience through deterministic services and tenant-level network slicing.
At the operational level, MANs should strengthen service-oriented capabilities to
provide flexible and agile computing power services for users, while enhancing
intelligent O&M capabilities to ensure high stability and reliability of services. At the
scheduling level, MANs should establish an intelligent cross-domain coordination
system to achieve global optimal allocation of computing power, storage and network
resources. These requirements are accelerating the transformation of MANs into
next-generation intelligent, converged, and deterministic Al infrastructure, enabling

continuous innovation in cloud-network integrated products and services.
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Chapter 111

MAN Architecture for the
Al Era



3.1 MANSs design objectives

The metropolitan area networks (MANs) design for Al era focuses on the
construction of the next-generation network infrastructure with deeply integration
between computing and network, and is intelligent, efficient, secure, and reliable. The
core directions are as follows:

1. Integrated computing and network, converged bearer

Centered on the computing resource pool, MANs can integrate the heterogeneous
computing power of general computing, intelligent computing, and supercomputing.
SRv6 and other technologies are used to uniformly schedule and intelligently
orchestrate network, cloud, and compute resources, breaking physical isolation.
Supports lossless transmission of heterogeneous computing power across domains
and collaborative training of multiple AIDCs, building a foundation for cloud-network
synergy innovation. Unified access of fixed, mobile, and cloud services and
converged bearer of multiple services, achieving ubiquitous access of users. By
building intelligent, agile, secure, and reliable high-quality network infrastructure,
MANSs can effectively support efficient collaboration of multi-dimensional services
and provides end-to-end all-scenario connection services for digital transformation
and smart upgrade of industries.

2. Elasticity, agility, flexibility, and efficiency

Based on the Spine-Leaf modular architecture and IPv6 Enhanced technology
foundation, agile network expansion and service provisioning in minutes can be
achieved. Intelligent identification of elephant flows and network flow-level
scheduling enable network-level load balancing and refined management and control
of service flows, ensuring high throughput and low latency transmission performance,
implementing quick traffic grooming and high user experience access, and
comprehensively improving the overall network transmission efficiency.

3. Precise control and dynamic convergence

Based on intelligent flow identification and precise flow control technology, and

the deterministic delay forwarding and network convergence optimization mechanism,
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the RDMA high-performance lossless interconnection architecture is constructed.
Based on the intelligent flow-level scheduling capability and the flexible computing
power-oriented network architecture, dynamic collaboration between enterprise
computing power and hub computing power centers is supported. On-demand service
flow adaptation and precise resource orchestration effectively support TB-level data
throughput requirements for large Al model training and inference, achieving the
optimal balance between network construction costs and computing efficiency.

4. Intelligent O&M, security and reliability

The Al-driven intelligent management and control system is deployed to build
intelligent O&M capabilities such as flow-level scheduling optimization, fault
self-healing, and network simulation. The dual-plane redundancy architecture and
cross-domain disaster recovery mechanism ensure high system availability. Network
slicing, tenant-level flow control, and standard security interfaces are used to establish
a multi-layer security isolation system. Integrated with technologies such as
zero-packet-loss transmission assurance and end-to-end QoE degradation detection to
ensure reliable transmission over all paths of data pipelines and redundant protection
for multi-plane computing boundaries, ensuring secure and reliable service running

throughout the service lifecycle.
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3.2 Overall MAN architecture
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Figure 3-1: MANSs Architecture for the Al Era

The MAN architecture for the Al era consists of three core modules: Computing

power-oriented Point Of Delivery (POD) zone, Computing power-oriented Point Of

Presence (POP) zone, and Computing power-oriented interconnection zone. The three

modules seamlessly collaborate with the cloud-network operation system through

standard interface and protocols. A tailorable and hot-swappable building-block

architecture is used to achieve elastic scaling of computing resources as required.

Computing power-oriented POD zone: This module introduces PODs in the data
center to the MAN. Based on the spine-leaf modular architecture, this module
enables efficient access of customer terminals and enterprise branches through
optical fibers, PON, and 5G, and supports large-capacity data exchange, fast
convergence and traffic diversion of fixed and mobile services and intelligent
computing services in a region. SRv6 and EVPN technologies are used to carry
multiple services in a unified manner. The cloud & network operation system is
used to achieve automatic service provisioning and intelligent O&M. The

network slicing technology provides customized bandwidth and security
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assurance for intelligent computing, industry, and public services.

Computing power-oriented POP zone: As the interconnection point between the
cloud network and the bearer network, this module interconnects with the
computing power resource pool in a standard manner to implement on-demand
scheduling and elastic allocation of computing power resources, so as to support
integrated computing-network services. Serves as the network anchor of the
computing resource pool, it connects to provincial/regional spine nodes, opens up
inter-computing channels, and supports cross-domain resource collaboration and
disaster recovery. Interworks with the computing power-oriented POD zone to
provide end-to-end lossless connection between users in different PODs and
computing power resource pools.

Computing power-oriented interconnection zone: This module serves as the hub
between the MAN, backbone network, Internet, and industry private networks. It
simplifies the connection between the MAN and external networks and between
various computing power resource pools, implements flexible component
expansion, and efficiently diverts traffic between components. Uses 400G/800G
high-speed links, network-level load balancing, and SRv6/EVPN technologies to
achieve efficient inter-domain traffic forwarding and path optimization. The
network slicing technology provides differentiated bandwidth and security
assurance for intelligent computing services, ensuring stable service
interconnection and user experience.

The three module zones together constitute the MAN architecture oriented to the

Al era. Each module zone plays a specific role to ensure the efficient bearing of Al

services on the MAN. The computing power-oriented POD zone functions as the user

access entry and connects to the computing power-oriented POP zone through spine

devices to build efficient transmission channels between users and the computing

power resource pool. The computing power-oriented interconnection zone and

computing power-oriented POP zone are connected to the cross-domain computing

power pool collaboration network to implement intelligent scheduling of computing
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power resources. The three modules use standard technologies such as SRv6 and
EVPN to ensure end-to-end service logic consistency and provide high-quality
network bearer capabilities for Al services.

Based on the concept of hierarchical decoupling and collaborative design, the
architecture builds an integrated computing service network featuring edge access,
core scheduling, and cross-domain collaboration. It uses the cloud-network operations
system to implement unified management and control and intelligent scheduling of
network-wide resources. The cloud network operation system focuses on four core
modules: resource management, computing power scheduling, service orchestration,
and operation assurance. Resource management integrates network and computing
power resources to achieve global visibility and management, and computing power
scheduling dynamically optimizes resource allocation based on service requirements.
Service orchestration implements quick service deployment and end-to-end
integration through automated processes. Operation assurance uses intelligent
monitoring and analysis technologies to ensure stable system running and user
experience. The collaborative operation of modules provides a solid foundation for
the computing power requirements of high concurrency, low latency, and high

reliability in the Al era.
3.3 Key modules of MAN

3.3.1 Computing power-oriented POD zone

The computing power-oriented POD zone is the edge access layer of the MAN
and provides converged access for customer terminals (2C), enterprise branches (2B),
and home users (2H). Aggregates traffic level by level through base stations, CPEs,
leaf nodes, and spine nodes to form a wide-coverage and flexible computing service
entry. In addition, deep and shallow edge computing can be mounted on demand,
providing customers with low-latency and high-experience computing services. Its
core functions include:

® (Converged access: supports multiple access modes, such as optical fiber, PON,
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and 5@, implementing "one-line for multi-computing". A single line can meet the
access requirements of Internet, cloud services, and multi-computing power
pools.

® FElastic bandwidth: Provides elastic access capabilities from 0 to 100 Gbit/s,
adapting to changes in customers' computing power requirements.

® Pooling scheduling: Supports deep and shallow edge computing power pooling
and cross-POD scheduling, flexible coverage based on the service scale or

service scope, achieving efficient computing resource transmission.
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Figure 3-2 Computing power-oriented POD Zone

The computing power-oriented POD zone wuses a wide-coverage and
level-by-level convergence networking architecture to dynamically balance the
computing power resource utilization while reducing network coverage costs. Precise
scheduling and control at the flow level ensure data transmission quality based on the
RDMA protocol, and effectively support long-distance lossless transmission in
scenarios where massive samples are quickly processed and storage and computing
are separated. In addition, the operation system has the flexible and agile resource
configuration capability. By dynamically adjusting network paths and bandwidth
resources, the operation system effectively copes with service traffic fluctuation and

ensures service continuity and stability.
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3.3.2 Computing power-oriented POP zone

The computing power-oriented POP zone connects the MAN and computing
power resource pool through the computing power gateway, implementing
standardized and fast interconnection between the sample plane network and service
plane network of the MAN and computing power resource pool. The computing POP
zone provides standardized functional zone interconnection policies and deployment
guidance, supporting integrated bearing and resource scheduling of multiple services.
Its core functions include:
® Modular networking: Standard modules connect to heterogeneous computing

resource pools (self-owned or third-party) to implement resource pooling and

unified management.

® End-to-end lossless connection: Connects to provincial/regional spine nodes and
associates with multiple computing power PODs to provide low-latency and
high-reliability connections between users in different PODs and computing
power pools.

® Intelligent computing service support: Stream-level precise flow control is used
to meet service requirements such as sample input calculation, model training
with storage and compute disaggregated across AIDCs, and cross-cluster

collaborative training.
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Figure 3-3 Computing power-oriented POP Zone
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The computing power-oriented POP zone supports multi-service convergence and
supports various services, such as general computing and intelligent computing. As
the north-south traffic scheduling hub, the computing gateway intelligently
interconnects with the sample plane and service plane networks of the computing
resource pool through standard interconnection policies. The computing power POP
establishes high-speed links with provincial or regional spine nodes and multiple
PODs to form an end-to-end connection between users, computing PODs, computing

POPs, and computing resource pools.

3.3.3 Computing power-oriented interconnection zone

As the core hub node of the MAN, the computing power-oriented interconnection
zone connects the computing power-oriented POD zone and computing
power-oriented POP zone to the backbone network and Internet egress through
400G/800G high-speed links. The network slicing technology provides differentiated
bandwidth and security assurance for intelligent computing services, ensuring stable
service interconnection and user experience. Its core functions include:
® Differentiated services: Based on technologies such as precise traffic

identification to classify and mark different service flows, so as to provide

differentiated service quality assurance for different types of services, and meet
different requirements for latency, bandwidth, and packet loss rate of various
services. Ensure that mission-critical services and high-value services can obtain
priority processing and better network resources.

® Traffic scheduling and steering: Schedules and manages the traffic in each
functional zone of the MAN in a unified manner, and steers the traffic to different
links and paths based on the network load, service requirements, and predefined
policies. In this way, the traffic is evenly distributed and the network resource
utilization can be improved.

® High-speed network interconnection: As the hub for connecting MANs to

backbone networks, other MANs, computing power-oriented POPs, and
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computing power-oriented PODs, the uses 400G/800G links to implement
high-speed interconnection between different networks. Exchanges routing
information with external networks, ensures that data packets can be correctly
forwarded between the MAN and external networks, and ensures smooth

transmission of various services between different network domains.
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Figure 3-4 Computing power-oriented interconnection zone
The computing power-oriented interconnection zone builds an integrated MANs
base of "high-speed interconnection and intelligent scheduling". Support service
innovation through differentiated services, release computing resource efficiency
through intelligent scheduling, break down cross-domain collaboration barriers, and
enable computing power circulation and converged applications of new network

infrastructure.
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Chapter 1V

MAN Key Technologies
for the Al Era



4.1 Integrated computing and network, converged

bearer network

4.1.1 Unified service bearer network

In the Al era, MANSs are facing new challenges brought by the sharp increase in
computing power collaboration and data transmission requirements. Therefore, the
unified protocol stack is urgently required to carry multiple fixed, mobile, cloud, and
computing services simultaneously, reducing network complexity. Service
deployment and O&M efficiency is significantly improved. The SRv6 and
EVPN-based converged architecture provides an ideal solution for unified service
bearer network. It implements logical isolation and flexible scheduling of services on
a single network, avoiding architecture redundancy caused by multiple traditional
networks and greatly improving network resource utilization. Its core strengths are as
follows:
® Unified user access: SRv6 supports cross-domain end-to-end connections based

on IPv6 native protocols. Enterprise users can meet multiple service requirements

with only one access, significantly reducing access complexity.

® Unified service bearing: EVPN provides flexible Layer 2/Layer 3 VPN services
and SRv6 source routing capabilities to dynamically adapt to various service SLA
requirements, implementing intelligent traffic scheduling and resource
optimization.

® (Convenient service provisioning: Intelligent O&M technologies such as
autonomous driving network enable automatic service orchestration and
minute-level service provisioning, significantly improving network agility. In
addition, SRv6's network programmability lays a foundation for Al-driven
network optimization, further improving network resource utilization and

intelligence.
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4.1.2 Intelligent scheduling of computing power

In ubiquitous computing power scenarios, MANs face the core challenge of
dynamic matching of computing power supply and demand. Therefore, key problems
such as resource dispersion, requirement diversity, and task real-timeness need to be
resolved. MANSs needs to build an intelligent scheduling mechanism for computing
power. The mechanism implements dynamic pricing and task allocation by real-time
sensing of supply and demand status and algorithm optimization, ensuring efficient
utilization of computing power resources and meeting users' core requirements for
low latency, high reliability, and low cost.

The core objective of intelligent scheduling of computing power is to achieve
dynamic matching between supply and demand and improve the collaboration
efficiency of computing power resources. Based on the geographical location,
resource type, and real-time load of the supplier, as well as the service SLA
requirements and task characteristics of the demander, the global computing power
awareness and unified measurement system are constructed. In this process, SRv6
uses flexible and programmable features to deeply bind computing power scheduling
and service requirements through network path optimization. Intelligent scheduling of
computing power builds a closed-loop system featuring dynamic resource awareness,
SRv6 path optimization, and intelligent decision-making to implement precise
scheduling of heterogeneous resources across domains and provide low-latency and
high-elastic computing power assurance for computing scenarios such as general

computing, intelligent computing, and supercomputing.
4.2 Elasticity, agility, flexibility and efficiency

4.2.1 Task-based scheduling

The task-based scheduling technology facilitates the off-peak transmission of
non-real-time tasks (such as data backup tasks) and improves the utilization of idle

network resources. This technology is based on the intelligent closed-loop mechanism
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of "requirement awareness-resource prediction-dynamic fulfillment", which improves
resource utilization efficiency and user experience. First, the operation system
receives user transmission requirements through standardized interfaces and performs
multi-dimensional feasibility evaluation based on historical bandwidth data. and feed
back a committed transmission time window to the user. Second, the network slicing
technology is used to dynamically allocate physical port resources, and dedicated
transmission channels are provided for users. Finally, the transmission quality is
monitored in real time during the task execution and bandwidth resources are

automatically released after the task is complete.

- ) : . .
{y’\ ‘ OB Domain Computing Power-Oriented
™ | Operation System Metro Network

User

(@ Submit requirements through standardized interfaces,
specifyingstart and end nodes, bandwidth, and service level

! T~ (@ Based on the network capacity prediction model, perform
@ Feedbackthe promised time window to the user, and 4, multi-dimensional evaluation of task feasibility
_generate a digital contract after confirmation
<

@ OB domain establishes a dedicated transmission channel
for users and uses network slicing to reserve resources.

(8 Monitortransmission quality in real time, automatically
trigger resource recovery after completion, and update the
__global network status.
<

Figure 4-1: Task-based scheduling process

The task-based scheduling technology implements end-to-end automated service
processes, greatly optimizes the response time from requirement submission to
resource readiness, and significantly improves network-wide resource utilization. This
technology establishes a precise time-effective guarantee mechanism, and relies on
path pre-computation and dynamic optimization algorithms to ensure the
deterministic commitment of transmission time-effectiveness. The digital twin
network is used to simulate complex tasks, build intelligent resource scheduling
capabilities, and implement conflict avoidance and global optimal orchestration in
multi-task concurrency scenarios. Finally, the dynamic and accurate matching

between network resource supply and user demand fluctuation in seconds is achieved.

4.2.2 Elastic bandwidth

In typical application scenarios, such as massive sample data storage, enterprises

face bandwidth configuration problems caused by periodic data transmission peak
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hours. Long-term use of high-bandwidth private lines will waste resources during idle
periods, while low-bandwidth private lines will idle computing resources due to long
transmission delay. The elastic bandwidth technology enables dynamic on-demand
expansion of bandwidth resources and relies on the service agility of the management
and control domain, effectively solving the dilemma of "high bandwidth cannot be
used and low bandwidth cannot be used".

The elastic bandwidth technology implements dynamic scheduling of bandwidth
resources by constructing in-depth collaboration between the network and the
operation system. This technology receives bandwidth adjustment instructions from
users based on standard service interfaces, builds automatic service orchestration
capabilities based on the operation system, and supports minute-level synchronous
adjustment of port rates, QoS policies, and routing entries. The entire process forms a
closed-loop control of requirement awareness, policy generation, and resource
reconstruction, implementing elastic scaling of the bandwidth of a single private line
within the range of 100 Mbit/s to 10 Gbit/s/100 Gbit/s. This technology not only
provides enterprises with minute-level online scale-out and scale-in agile response
capabilities, effectively copes with the instantaneous requirements of network
resources caused by burst services, but also supports precise charging based on

duration and usage, significantly improving the network service capability.

4.2.3 High-bandwidth links

The rapid development of intelligent computing services imposes higher
requirements on link bandwidth. To meet the requirements for uploading TB/PB-level
enterprise sample data in minutes or hours at a high speed, MANs are accelerating
link upgrade. Edge nodes use 100G high-speed access, and 400G high-bandwidth
links are deployed at the aggregation layer to carry aggregated traffic. In addition, to
cope with the insufficient computing power of a single intelligent computing center,
resources of multiple intelligent computing centers need to be integrated to support

large model training. In this context, 400G high-speed links have been widely used on
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data center parameter plane networks, and MANs need to be upgraded to 400G
architecture to improve bandwidth utilization and dynamic scheduling capabilities and
build high-capacity network infrastructure.

Increasing the rate of a single port is a key technology for efficient and low-cost
transmission of ultra-large-scale traffic. It has become the core evolution direction of
the intelligent computing Internet. Currently, the 400GE port technology for metro
interconnection has become mature. Large-scale deployment of 400G interconnection
links can effectively reduce the single-bit transmission cost of intelligent computing
interconnection, lay a foundation for future evolution to 800G technology, and

continuously optimize the transmission cost per bit.

4.2.4 Network-level load balancing

large Al model implements distributed training based on aggregate
communication. Traffic has the characteristics of high synchronization, large traffic,
and periodic transmission. In this service mode, each equal-cost path in the network
carries a large number of data flows at the same time. As a result, the traditional
hash-based load balancing technology cannot achieve complete balance between
paths. Network-level load balancing is used to solve the problem of packet loss
caused by congestion on a non-faulty homogeneous network in the cross-AIDC
collaborative training scenario. In the non-fault scenario, the network device does not
have faults such as optical module damage and intermittent link disconnection. In the
homogeneous scenario, the bandwidth and delay of the network device are
symmetrical and synchronized. This technology effectively improves network
transmission efficiency in intelligent collaborative training scenarios by optimizing
the traffic allocation mechanism.

Network-level load balancing implements conflict-free and balanced scheduling
between paths through unified network-wide traffic planning. In this mechanism, the
network device first collects the traffic information of the service in real time and

reports the information to the network controller. The network controller runs the
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global route selection algorithm based on the topology status and traffic
characteristics, and intelligently allocates the optimal transmission path to each flow.
Finally, the controller delivers the path decision to the network device to perform path
adjustment. This dynamic traffic scheduling mechanism based on the global
perspective implements efficient and even load distribution, achieves the end-to-end
flow transmission efficiency of over 95%, and effectively ensures the efficient and

stable running of the training process.
4.3 Precise control and dynamic convergence

4.3.1 Intelligent identification and scheduling of elephant

flows

In the AI era, the traffic characteristics of MANs are undergoing a remarkable
transformation. The traditional service mode based on massive small and micro flows
is gradually evolving to new service forms such as Al training and distributed
computing, which are characterized by high bandwidth and long-term elephant flows.
Such heavy-traffic services are prone to network congestion and cause overall
throughput performance deterioration. Therefore, an intelligent traffic identification
and scheduling system is required to improve network resource utilization and ensure
efficient transmission of key Al services and overall network performance.

The intelligent identification and scheduling technology of elephant flow traffic
builds a closed-loop optimization system of "perception - decision making -
execution" to maximize the global network capacity. This technology detects elephant
flows in real time through in-depth traffic feature analysis, and reports fine-grained
data such as flow features and throughput to the controller in real time by using the
Telemetry technology. Based on the SRv6 programmable feature and real-time
network situation (such as topology status and link load), the controller establishes an
accurate matching model between traffic requirements and resource provisioning and

dynamically generates an optimal SRv6 scheduling policy. By intelligently guiding
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elephant flows to the optimal path, this technology not only ensures that the
throughput of Al services approaches the physical bandwidth limit, but also
significantly reduces the link congestion probability through flow-level precise
scheduling, building a transmission environment with high throughput, low latency,
and low congestion, and providing reliable assurance for large-scale data exchange.
For RDMA service, it can also split the elephant flow based on the information in the
inner headers of the packet, so as to implement fine-grained traffic identification and

management.

4.3.2 Precise flow control

With the rapid development of intelligent computing services, such as
cross-AIDC collaborative training and cloud-edge collaboration training/inference,
the wide application of the RDMA transmission protocol poses higher requirements
on the flow control mechanism of the MAN. Currently, PFC mechanism is widely
used in data centers to ensure lossless transmission. However, the coarse-grained
control at the port queue level is prone to head block and false damage problems. In
contrast, the data flow-based precise flow control technology implements flow-level
precise backpressure control through fine-grained identification based on IP 5-tuple.
This technology not only effectively resolves the inherent defects of traditional PFC,
but also dynamically optimizes flow control policies based on real-time network
status. This feature ensures efficient and stable data transmission in complex WAN

multi-tenant scenarios and provides a better bearer environment for RDMA services.

Flow 1 No braking :
T N, M. . . E———— M [ -
Flow 3 Braking
‘-\-- =
————————————————————— Flow-levellimta e e e e e e i = e = = -
Device A Congestion Device B
Notification

Figure 4-2: Flow-level precise flow control technology
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To meet the lossless transmission requirements of the RDMA protocol, the
flow-level precise flow control technology builds a fine-grained control system. This
technology breaks through the limitations of traditional PFC physical port-level
control. It allocates an independent queue buffer to each RDMA service flow and
monitors the buffer water level in real time, implementing finer traffic management.
When congestion occurs on a specific service flow, the system isolates and stores the
packet in the dedicated buffer. When the queue depth exceeds the preset threshold, the
system sends flow-level backpressure signals to the upstream device in hop-by-hop
backtracking mode. This technology only limits the rate of the congested flow,
effectively avoiding the problems caused by the traditional PFC technology, such as
queue head congestion. The practical test shows that the proposed technology can
control the end-to-end packet loss rate of wide area RDMA transmission below
0.001%, and keep the stable throughput rate above 95%. Then the risk of network
congestion spreading is eliminated completely by the fault domain isolation

mechanism between service flows.

4.3.3 High convergence ratio network

In the cross-AIDC collaborative training scenario, MANs needs to carry
large-scale parameter plane data synchronization between multiple data centers. For
example, the 200 Gbit/s transmission rate of a single NIC leads to the peak burst
traffic on the parameter plane as high as 2000 Tbit/s. If the non-convergence
networking solution is used, the construction cost is high. Therefore, the high
convergence ratio networking technology implements efficient convergence of
cross-DC collaborative training traffic by using an in-depth collaborative optimization
of a set communication algorithm and a network architecture, thereby significantly
reducing deployment costs of network infrastructure between multiple AIDCs.

This technology innovatively adopts the three-in-one collaborative mechanism of
"algorithm-based peak reduction, cache peak clipping, and scheduling acceleration",

which can maintain over 95% end-to-end computing efficiency under the network
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architecture with high convergence ratios, such as 32:1 and 64:1. A new network
paradigm adapted to cross-AIDC collaborative training is constructed. Its core lies in
the reconstruction of the aggregate communication process by using the hierarchical
gradient aggregation algorithm, effectively reducing the number of computing cards
for cross-DC communication, and realizing the initial convergence of network
bandwidth. In addition, smart routers with large-capacity buffers are deployed on
MANSs. The dual mechanism of "burst buffering + queue scheduling" is used to split
training tasks into controllable microburst flows. The cache is used to absorb traffic
impact and priority scheduling is used to ensure the timely transmission of GPU
control signaling. Avoids idle waiting of computing resources, thereby significantly
reducing bandwidth requirements across data center network while ensuring training

efficiency.

4.3.4 deterministic service network

In recent years, with the booming rise of intelligent computing service, the
application scenarios of inference service are becoming more and more extensive. The
transition of inference service from single mode to multi-mode and the continuous
evolution towards real-time interaction imposes more stringent requirements on the
network. On the one hand, the network needs to be characterized by deterministic low
latency to ensure real-time, smooth presentation of inference result, avoiding frame
freezing and latency. On the other hand, deterministic bandwidth services are also
indispensable. They can ensure stable network bandwidth and uninterrupted data
transmission during a large amount of data transmission without congestion.
Therefore, the network needs to provide deterministic network services.

The deterministic network technology can partition network resources into
different logical networks and provide independent logical networks for different
services to implement differentiated services. With SRv6 and Flex-E technology, it
can plan data transmission paths more flexibly and optimize network traffic

distribution. using SRv6 with the network controller, low-latency path computation is
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implemented, effectively ensuring service latency. The network controller collects
network topology and link status information in real time. Based on the collected
information and the path programmable feature of SRv6, the network controller
computes the optimal path that meets the latency requirement for services. When
service data enters the network, the SRv6 path is forwarded along the planned SRv6
path to avoid congested nodes and links, reducing the transmission delay. In addition,
through Flex-E bandwidth reservation mechanism allocates dedicated bandwidth
resources to services, ensures that the bandwidth requirements of specific services can
be met even when the network is congested or busy, preventing service performance
deterioration caused by bandwidth contention, ensuring service bandwidth and service

experience even when the network load is heavy.

4.4 Intelligent O&M, security and reliability

4.4.1 Intelligent O&M capability

With the rapid development of technologies such as 5G, Internet of Things (IoT),
and edge computing, MANs are facing challenges such as traffic surge, service
diversification, and strict service quality requirements. The traditional O&M mode
based on manual rules and static policies cannot meet the real-time, reliable, and
flexible network requirements in the Al era. Therefore, an intelligent O&M system is
urgently required for MAN networks. TMF defines network autonomy as six levels
(LO to LS). The core of the intelligent O&M system for MANSs in the Al era is to build
a new network Al brain that features self-sensing, self-analysis, self-decision-making,
and self-deployment, helps the network autonomy level to evolve from L3 conditional
autonomy to L4 advanced autonomy, and finally achieves the goal of L5 complete
intelligent autonomy.

The MAN intelligent O&M system is constructed based on multiple key
technologies. First, distributed probes and embedded Al chips are deployed to realize
multi-dimensional real-time network status awareness. Second, the intelligent analysis

engine built based on deep learning processes massive O&M data in real time. Finally,
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the SDN controller and automatic orchestration system are used to deliver and adjust

policies in seconds. The following are the key intelligent O&M capabilities:

High-precision simulation: Real-time online digital mirroring network 1is
constructed to implement multi-level visualized simulation of physical topology,
routes, tunnels, VPNs, and flows. The system automatically synchronizes live
network configurations, BGP routes, and traffic characteristics, establishes a
benchmark mirroring network model, and constructs a pre-evaluation system for
configuration changes based on the digital twin technology. When the network
configuration changes, the system automatically generates a new mirroring
network. Compare and analyze the topology status, traffic distribution, and route
convergence efficiency before and after the change, and provide an impact
assessment report to effectively identify potential high-risk configuration errors.
In addition, with the dynamic traffic modeling technology, the system can
simulate routing policies and traffic changes in milliseconds, accurately predict
the evolution trend of key performance indicators such as delay fluctuation and
packet loss rate threshold, providing data support for network optimization
decision-making.

Al diagnosis: A multi-dimensional fault self-diagnosis model is established based
on the second-level fault feature extraction on the device side, knowledge graph
inference, and time series pattern mining. The system adopts the big model
thinking chain technology to realize intelligent alarm aggregation and status trend
prediction, and supports dynamic fault root cause reasoning and potential risk
identification. The online knowledge injection mechanism enables the system to
perform guided diagnosis on unknown faults and generate closed-loop handling
suggestions, forming a complete intelligent O&M solution.

Self-healing network: A complete closed-loop fault handling mechanism is built
based on the O&M knowledge database and dynamic orchestration capabilities of
large models, implementing automatic processing in the entire process of

"sensing-diagnosis-decision-making-execution". For non-hardware faults, the
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system automatically implements recovery policies such as redundant path
switchover. For hardware faults, the system generates precise maintenance orders
based on digital twin simulation. In addition, based on the correlation analysis of
network topology status, device health indicators, and traffic patterns, the system
can predict potential faults in advance and implement intelligent DR with

minute-level self-healing.

4.4.2 Tenant-level network slice isolation

MANS needs to carry traditional services and intelligent computing services in a
unified manner and meet differentiated SLA requirements in different service
scenarios. The dual isolation mechanism between logical and physical resources
effectively prevents resource preemption and ensures the deterministic service
capability of key indicators such as bandwidth and latency for training and inference
services. As a new IPv6-based network solution, the tenant-level slice isolation
technology makes full use of SRv6 programmability and IPv6 address space
advantages to provide multiple tenants with network slice services that share physical
resources but are logically isolated. A core mechanism of this technology is as follows:
A source node encapsulates a unique slice identifier according to a tenant requirement,
and nodes along the path implement slice identification by parsing a packet, and
execute a predefined forwarding policy.

Tenant-level network slicing technology has three core advantages: First, slice
identifiers are used to represent fine-grained resources, ensuring that indicators such
as bandwidth and latency between slices do not interfere with each other. Second,
SRv6 network programmability supports flexible service orchestration, meeting the
requirements for fast service rollout. Third, it provides a highly reliable network
slicing solution to achieve optimal resource utilization and accurate service assurance

1n a multi-tenant environment.
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4.4.3 End-to-End security assurance

A multi-level defense-in-depth system is required for MANSs in the Al era to cope
with data leakage and horizontal penetration risks in multi-tenant environments. Its
core is to implement E2E tenant data isolation and encrypted transmission, especially
in computing power scheduling and cross-domain communication scenarios to ensure
data confidentiality and integrity. Based on the SRv6 VPN and network slicing
technology, a three-level isolation mechanism of "access device-network slice-VPN"
can be constructed to effectively block security threats by decoupling the physical
layer, protocol layer, and service layer from all dimensions. In addition, security
group policies and cross-domain traffic trustlist management and control are used to
achieve zero cross-penetration of tenant data.

The security architecture uses the dual protection mechanisms of slice isolation
and VPN encryption to upgrade security capabilities from passive defense to active
immunity, achieving the security goal of "no data is sliced, no risks are crossed, and
no plaintext traffic is left". In the future, cutting-edge technologies such as quantum
encryption (including post-quantum cryptography and quantum key distribution) and
trusted execution environment will further enhance the security protection capability
of the network. Convergence of these technologies will promote the evolution of
intelligent computing networks to a zero-trust architecture featuring "active immunity,
dynamic awareness, and full-chain trustworthiness", providing a solid security

foundation for service innovation in the Al era.

4.4.4 Green and low carbon network

As the key infrastructure that supports the development of artificial intelligence
and digital economy, MANs are facing the challenges of high energy consumption
and low efficiency. As computing power requirements grow exponentially and
network bandwidth pressure continues to rise, problems such as high single-bit power
consumption and sharp increase in heat dissipation costs of the existing 100G

platform become increasingly prominent. As a result, the OPEX and carbon emissions
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increase at the same time. In addition, the multi-layer network architecture brings
device redundancy and protocol conversion loss, which further aggravates the energy
efficiency bottleneck. Under the background of the "double carbon" strategy, it is
urgent to use technological innovation to revolutionaryly improve network energy
efficiency and build MANs with high energy efficiency, large bandwidth bearing
capability, and intelligent scheduling features.

The green and low-carbon transformation of MANs focuses on three technical
paths: In terms of ultra-high-speed platform upgrade, 400G/800G networks can
significantly reduce single-bit energy consumption and support long-distance lossless
transmission, meeting the requirements of high-bandwidth scenarios such as large Al
model training. In terms of intelligent energy saving system, Al-based real-time load
prediction and multi-factor decision-making algorithms implement dynamic
optimization and adjustment of device power, heat dissipation policies, and optical
module status. In terms of architecture reconstruction, SRv6 and EVPN is used to
simplify network layers, promote flattened architecture, and use SDN to implement
precise resource scheduling. Through the collaborative innovation of ultra-high-speed
platforms, intelligent control, and simplified architecture, we will build a new
computing network with high energy efficiency and low emissions, providing green

infrastructure support for high-quality digital economy development.
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Chapter V

Typical Deployment
Scenarios



5.1 Scenario 1: Transmitting massive sample data to

AIDC

Scenario  Characteristics: All three stages of large Al model
development—pre-training, post-training, and fine-tuning—require transmitting
massive volumes of sample data to AIDC. During the pre-training phase, data
volumes have reached the PB scale. While the sample data volume per user in the
post-training and fine-tuning phases is relatively smaller (typically at GB/TB levels),
the aggregate data volume surges significantly as the number of users
increases. Hence, MANs must meet the ultra-high-throughput demands of training
data delivery scenarios and possess tenant-level slicing capabilities to ensure secure
isolation between different tenants.

Solution:

________________________________________________________________

Figure 5-1 : Transmitting massive sample data to AIDC solution
MANSs require key technical capabilities like tenant-level slicing isolation and
network-level load balancing to support massive sample data delivery scenarios:
® Tenant-level slicing isolation: Isolates training data traffic from regular service
traffic using hierarchical slicing technology, effectively preventing resource
contention between tenants;
® Network-level load balancing: Implements conflict-free balanced scheduling
across all network paths through unified traffic planning, significantly improving

network resource utilization.
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5.2 Scenario 2: Model training with storage and

compute disaggregated

Scenario characteristics: Industries such as finance and healthcare impose
extremely high security requirements on private sensitive data. When leasing
third-party AIDC for large model training, they demand that private data can not be
stored on third-party AIDC. Therefore, in the remote training scenario, sample data
storage nodes and AIDC are deployed across wide-area networks. Sample data is
pulled on demand for training and immediately discarded after computation,
effectively meeting the data security needs of sensitive-data customers. MANs must
meet the RDMA lossless transmission requirements of this remote training scenario
and possess capabilities such as tenant-level network slicing and data encryption to

ensure sample data is not compromised during transmission.

Solution:
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Figure 5-2: model training with storage and compute disaggregated solution
MANSs needs to possess key technical capabilities such as tenant-level slice

isolation and RDMA wide-area lossless transmission to support the remote training

scenario:

® Tenant-level slice isolation: Supports isolating remote training traffic from
ordinary service traffic, avoiding traffic throttling during congestion control
affecting other services;

® RDMA wide-area lossless: Through flow-level precise flow control, avoids
packet loss during the sample pulling synchronized with training, ensuring
computational efficiency does not degrade during remote training;

® Elephant flow load balancing: Based on transport layer information, splits traffic,

load balances multiple sub-flows of one elephant flow onto different slice paths,
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achieving high-throughput transmission;
® Data encryption: Supports end-to-end encrypted data transmission, guaranteeing

the security of sample data during transmission.

5.3 Scenario 3: Collaborative model training across

multiple AIDCs

Scenario Characteristics: During collaborative large model training across
multiple geographically dispersed AIDCs, intermediate data generated in each training
iteration (optimizer parameters, gradients, etc.) must be synchronized among all
AIDCs before proceeding to the next iteration. This cycle repeats until training
completion. Parameter-plane data synchronization relies on the RDMA which is
highly sensitive to packet loss, with concurrent data volumes reaching terabytes.
Consequently, MANs must deliver ultra-high throughput and lossless transmission
capabilities, while incorporating high-convergence networking to balance bandwidth
costs with training computational efficiency.

Solution:
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Figure 5-3: Collaborative model training across multiple AIDCs solution

MANS solutions must support the following key technologies:

® Network-level load balancing: Achieves conflict-free inter-path flow scheduling
across the entire network through unified traffic planning;

® [ossless RDMA over wide area networks: Prevents packet loss during distributed
training via per-flow precise flow control, ensuring no degradation in
computational efficiency;

® High-convergence networking: Implements efficient convergence of collaborative
training traffic through collective communication algorithms and network

optimization, reducing network infrastructure deployment costs.
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5.4 Scenario 4: Cloud-Edge collaborative model

training/inference

Scenario Characteristics: The local deployment approach of training-inference
integrated machines in corporate park struggles to meet enterprises’ rapidly growing
demands for model fine-tuning and inference. Thus, cloud-edge collaborative
training/inference between integrated machines and computing resource pools has
emerged as a critical direction for enabling elastic scaling of enterprise computing
resources, thereby supporting large model application deployment. Cloud-edge
collaboration relies on model partitioning, requiring MANs to support inter-layer
parameter plane data synchronization. This necessitates lossless RDMA transmission
capabilities with ultra-high throughput.

Solution:

H i 1 1 1 ==y AIDC
IV et e} e

i : ™ 1 i 1 i

i : BT I I & =)=
- @ - 1= 1= = =

1
= !

..................... ! 1
| A-Leaf Spine DC-Leaf Gateway !

________________________________________________________________

Figure 5-4: Cloud-Edge collaborative model training/inference solution
MANS solutions must support the following key technologies:
® Network-level Load Balancing: Achieves conflict-free balanced scheduling
across all paths in the entire network through unified network-wide traffic
planning;
® RDMA Wide-Area Lossless Networking: Prevents packet loss during model
training via flow-level precise traffic control, ensuring computational efficiency

remains undiminished throughout collaborative training and inference processes.

5.5 Scenario S: Inference delivery

Scenario Characteristics: Pre-trained large models are typically at the gigabyte

(GB) scale. During deployment, they need to be distributed from training clusters to
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multiple inference clusters. MANs must provide ultra-high throughput to ensure
transmission efficiency during distribution, alongside robust security mechanisms to
safeguard model integrity. Furthermore, after inference models are deployed to edge
nodes, they must rapidly respond to users’ high-concurrency, real-time inference

requests, necessitating deterministic service capabilities in MANS.

Solution:
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Figure 5-5: Inference delivery solution

MANES solutions must support the following key technologies:

® Network-level Load Balancing: Through network-wide traffic orchestration, it
achieves conflict-free balanced scheduling across all paths during inference
model deployment;

® Security Encryption: Combined multi-tiered encryption technologies safeguard
data security during transmission;

® Deterministic Low Latency: Ensuring optimal user experience during real-time

interaction with inference applications.

5.6 Scenario 6:Federated learning

Scenario Characteristics: During the multiple AIDCs’ federated learning
process, each participant trains models locally using private domain data. Model
parameter gradients are exchanged to achieve model parameter aggregation. MANs
must provide stable connectivity for devices participating in federated learning

while safeguarding data transmission security.
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Solution:
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Figure 6-6: Federated learning solution
MANS solutions must support the following key technologies:
® Seccure encryption: Through multi-level encryption technology combination,
guarantee the security of the data transmission process;
® RDMA Wide-Area Lossless Networking: Prevents packet loss during federated
learning via flow-level precise traffic control, ensuring computational efficiency

remains undiminished throughout federated learning.

5.7 Scenario 7: Multi-agent system / A2A

Scenario characteristics: Multi-Agent System (MAS) implements real-time
interoperability, dynamic task collaboration and secure communication between
agents through A2A (Agent-to-Agent) protocol, imposing explicit and strict
requirements on network: dynamic task delegation between A2A agents demands low
network latency to prevent task chain blocking; A2A needs to handle long-duration
tasks (e.g. in-depth research analysis lasting hours to days), requiring maintenance of
stable persistent connections; permission isolation (e.g. Agent A can only invoke
specific interfaces of Agent B) requires network support for fine-grained access
control.

Solution:
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Figure 5-7: Multi-agent system / A2A solution
MANS solutions must support the following key technologies:
Low-latency path: Metropolitan Area Network constructs millisecond-level
low-latency guarantee for task delegation among agents;
Network reliability: Metropolitan Area Network provides stable and reliable

network paths, ensuring long-duration tasks among agents.
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Chapter VI

Conclusions and Future
Perspectives



This white paper examines the development trends of artificial intelligence and
corresponding service requirements, conducting comprehensive research on
application scenarios, network architectures, key technologies, and deployment
solutions for metropolitan area networks. It actively promotes the evolution of
conventional metropolitan area networks into next-generation computing
service-oriented metropolitan area network, thereby facilitating technological
innovation and practical deployment.

The planning and construction of metropolitan area networks should be driven by
both user demands and advancements in computing-network convergence
technologies. Through the research and analysis presented in this white paper, we seek
to stimulate broader industry participation and discussions. We look forward to
collaborating with partners across the ecosystem to develop next-generation
metropolitan area networks featuring comprehensive coverage, elastic scalability,

lossless wide-area connectivity, ultra-high reliability, and intelligent automation.
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